Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(7)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-36101334

RESUMO

Members of the genus 'Candidatus Phytoplasma' are obligate intracellular bacteria restricted to phloem sieve elements and are able to colonize several tissues and the hemolymph in their insect vectors. The current unfeasibility of axenic culture and the low complexity of genomic sequences are obstacles in assembling complete chromosomes. Here, a method combining pathogen DNA enrichment from infected insects and dual deep-sequencing technologies was used to obtain the complete genome of a phytoplasma causing Grapevine Flavescence dorée. The de novo assembly generated a circular chromosome of 654,223 bp containing 506 protein-coding genes. Quality assessment of the draft showed a high degree of completeness. Comparative analysis with other phytoplasmas revealed the absence of potential mobile units and a reduced amount of putative phage-derived segments, suggesting a low genome plasticity. Phylogenetic analyses identified Candidatus Phytoplasma ziziphi as the closest fully sequenced relative. The "Flavescence dorée" phytoplasma strain CH genome also encoded for several putative effector proteins potentially playing a role in pathogen virulence. The availability of this genome provides the basis for the study of the pathogenicity mechanisms and evolution of the Flavescence dorée phytoplasma.

2.
Biology (Basel) ; 11(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36101359

RESUMO

Flavescence dorée (FD) is a grapevine disease caused by 'Candidatus Phytoplasma vitis' (FDp), which is epidemically transmitted by the Nearctic leafhopper Scaphoideus titanus. In this study, we applied dendrochronological techniques to analyse the response to FDp infections in terms of wood ring widths and anatomical structures of the xylem and phloem tissues of the trunk of the susceptible grapevine cultivar 'Chardonnay.' As a rule, grapevines are susceptible to water shortage and reduce their growth in diameter in case of summer drought. In the season of the external expression of FD symptoms, however, the ring width reductions are extreme and supersede any drought-induced effects. In addition, the anatomy of the phloem tissue in the year of the FD symptom expression appears heavily disarranged. Moreover, in the most suffering individuals, the xylem formation remains incomplete and mostly limited to the early wood tissue. In conclusion, even though the FD phytoplasma does not inhabit and replicate inside the xylem tissue, our results confirm existing indirect inhibiting effects on the ring growth and the xylem tissue formation in FDp-infected grapevines.

3.
Pathogens ; 11(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36015006

RESUMO

Massive outbreaks of virus yellows (VY) and syndrome "basses richesses" (SBR) are thought to be responsible for the major loss of sugar beet yields in 2020 in western cantons of Switzerland. Typical yellowing symptoms were visible during field inspections, and control measures were reportedly ineffective or even absent. Both diseases induce yellowing but have distinct etiologies; while VY is caused by aphid-transmitted RNA viruses, SBR is caused by the cixiid-transmitted γ-proteobacterium Candidatus Arsenophonus phytopathogenicus. To clarify the situation, samples from diseased plants across the country were screened for the causal agents of VY and SBR at the end of the season. Beet yellows virus (BYV) and Beet chlorosis virus (BChV) showed high incidence nationwide, and were frequently found together in SBR-infected fields in the West. Beet mild yellowing virus (BMYV) was detected in two sites in the West, while there was no detection of Beet western yellows virus or Beet mosaic virus. The nucleotide diversity of the detected viruses was then investigated using classic and high-throughput sequencing. For both diseases, outbreaks were analyzed in light of monitoring of the respective vectors, and symptoms were reproduced in greenhouse conditions by means of insect-mediated inoculations. Novel quantification tools were designed for BYV, BChV and Ca. A. phytopathogenicus, leading to the identification of specific tissues tropism for these pathogens.

4.
Microorganisms ; 9(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34835395

RESUMO

Pectobacterium and Dickeya species are the causal agents of blackleg and soft rot diseases in potatoes. The main pathogenic species identified so far on potatoes are Dickeya dianthicola, Dickeya solani, Pectobacterium atrosepticum, Pectobacterium brasiliense, Pectobacterium carotovorum, and Pectobacterium parmentieri. Ten years ago, the most prevalent Soft Rot Pectobacteriaceae in Europe were the Dickeya species, P. atrosepticum and P. carotovorum, with some variations among countries. Since then, a drastic increase in the abundance of P. brasiliense has been observed in most European countries. This shift is difficult to explain without comparing the pathogenicity of all Dickeya and Pectobacterium species. The pathogenicity of all the above-mentioned bacterial species was assessed in field trials and in vitro tuber slice trials in Switzerland. Two isolates of each species were inoculated by soaking tubers of cv. Desiree in a suspension of 105 CFU/mL, before planting in the field. For all trials, the Dickeya species were the most virulent ones, but long-term strain surveys performed in Switzerland indicate that P. brasiliense is currently the most frequent species detected. Our results show that the pathogenicity of the species is not the main factor explaining the high prevalence of P. brasiliense and P. parmentieri in the Swiss potato fields.

5.
Front Plant Sci ; 9: 1735, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555495

RESUMO

Grapevine red blotch is a recently identified viral disease that was first recognized in the Napa Valley of California. Infected plants showed foliar symptoms similar to leafroll, another grapevine viral disease, on vines testing negative for known grapevine leafroll-associated virus. Later, the Grapevine red blotch virus (GRBV) was independently discovered in the US states of California and New York and was demonstrated to be the causal agent of red blotch disease. Due to its wide occurrence in the United States, vector transmission, and impacts on grape industry, this virus has the potential to cause serious economic losses. Despite numerous attempts, it has yet not been possible to isolate or visualize viral particles from GRBV-infected plants, thereby hampering the development of a serological assay that would facilitate GRBV detection in grapevine. In this work, mass spectrometry approaches were applied in order to quantify GRBV in infected plants and identify potential biomarkers for viral infection. We present for the first time the physical detection on the protein level of the two GRBV genes V1 (coat protein) and V2 in grapevine tissue lysates. The GRBV coat protein load in petioles was determined to be in the range of 100-900 million copies per milligram wet weight by using three heavy isotope labeled reference peptides as internal standards. In leaves on the other hand, the V1 copy number per unit wet tissue weight appeared to be about six times lower than in petioles, and about 300 times lower in terms of protein concentration in the extractable protein mass, albeit these estimations could only be made with one reference peptide detectable in leaf extracts. Moreover, we found in leaf and petiole extracts of GRBV-infected plants a consistent upregulation of several enzymes involved in flavonoid biosynthesis by label-free shotgun proteomics, indicating the activation of a defense mechanism against GRBV, a plant response already described for Grapevine leafroll-associated virus infection on the transcriptome level. Finally and importantly, we identified some other microorganisms belonging to the grapevine leaf microbiota, two bacterial species (Novosphingobium sp. Rr 2-17 and Methylobacterium) and one virus, Grapevine rupestris stem pitting-associated virus.

6.
J Biol Chem ; 282(25): 17953-17963, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17353186

RESUMO

Src-like adaptor protein 2 (SLAP-2) is a hematopoietic adaptor protein previously implicated as a negative regulator of T-cell antigen receptor (TCR)-mediated signaling. SLAP-2 contains an SH3 and an SH2 domain, followed by a unique carboxyl-terminal tail, which is important for c-Cbl binding. Here we describe a novel role for SLAP-2 in regulation of the colony-stimulating factor 1 receptor (CSF-1R), a receptor tyrosine kinase important for growth and differentiation of myeloid cells. SLAP-2 co-immunoprecipitates with c-Cbl and CSF-1R in primary bone marrow-derived macrophages. Using murine myeloid cells expressing CSF-1R (FD-Fms cells), we show that SLAP-2 is tyrosine-phosphorylated upon stimulation with CSF-1 and associates constitutively with both c-Cbl and CSF-1R. In addition, we show that expression of a dominant negative form of SLAP-2 impairs c-Cbl association with the CSF-1R and receptor ubiquitination. Impaired c-Cbl recruitment also correlated with changes in the kinetics of CSF-1R down-regulation and trafficking. CSF-1-mediated differentiation of FD-Fms cells and activation of downstream signaling events was also enhanced in cells stably expressing dominant negative SLAP-2. Together, these results demonstrate that SLAP-2 plays a role in c-Cbl-dependent down-regulation of CSF-1R signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Regulação para Baixo , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Macrófagos/citologia , Camundongos , Fosforilação , Ligação Proteica , Transdução de Sinais , Ubiquitina/metabolismo , Domínios de Homologia de src
7.
Mol Cell Biol ; 24(6): 2397-409, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14993279

RESUMO

The epithelial Na+ channel (ENaC) is a heteromeric protein complex playing a fundamental role in Na+ homeostasis and blood pressure regulation. Specific mutations inactivating PY motifs in ENaC C termini cause Liddle's syndrome, an inherited form of hypertension. Previously we showed that these PY motifs serve as binding sites for the E3 enzyme Nedd4-2, implying ubiquitination as a regulatory mechanism of ENaC. Ubiquitination involves the sequential action of E1, E2, and E3 enzymes. Here we identify the E2 enzyme UBE2E3, which acts in concert with Nedd4-2, and show by coimmunoprecipitation that UBE2E3 and Nedd4-2 interact together. In Xenopus laevis oocytes, UBE2E3 reduces ENaC activity marginally, consistent with Nedd4-2 being the rate-limiting factor in this process, whereas a catalytically inactive mutant of UBE2E3 (UBE2E3-CS) causes elevated ENaC activity by increasing cell surface expression. No additive effect is observed when UBE2E3-CS is coexpressed with an inactive Nedd4-2 mutant, and the stimulatory role of UBE2E3-CS depends on the integrity of the PY motifs (Nedd4-2 binding sites) and the ubiquitination sites on ENaC. In renal mpkCCD(cl4) cells, displaying ENaC-dependent transepithelial Na+ transport, Nedd4-2 and UBE2E3 can be coimmunoprecipitated and overexpression of UBE2E3 affects Na+ transport, corroborating the concept of a concerted action of UBE2E3 and Nedd4-2 in ENaC regulation.


Assuntos
Canais de Sódio/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio , Feminino , Técnicas In Vitro , Rim/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Ubiquitina-Proteína Ligases Nedd4 , Oócitos/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Canais de Sódio/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Xenopus , Xenopus laevis
8.
Pflugers Arch ; 446(3): 334-8, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12698368

RESUMO

Ubiquitylation has emerged as an important mechanism for controlling surface expression of membrane proteins. This post-translational modification involves the sequential action of several enzymes including a ubiquitin-activating enzyme E1, a ubiquitin-conjugating enzyme E2 and a ubiquitin-protein ligase E3. E3s are responsible for substrate recognition. Here we describe the role of the Nedd4/Nedd4-like family of ubiquitin-protein ligases in the regulation of proteins involved in epithelial transport. The Nedd4/Nedd4-like proteins are composed of a N-terminal C2 domain, several WW domains and a catalytic HECT domain. The epithelial Na(+) channel ENaC is the best studied example of a Nedd4/Nedd4-like substrate. Its cell surface expression is regulated by the ubiquitin-protein ligase Nedd4-2 via direct PY motif/WW domain interaction. This regulatory mechanism is impaired in Liddle's disease, an inherited form of human hypertension, and is controlled by Sgk1, an aldosterone-inducible kinase which phosphorylates Nedd4-2. The regulation of ENaC by Nedd4-2 is a paradigm for the control of epithelial membrane proteins, as evidenced by the regulation of the ClC-5 chloride channel by the ubiquitin-protein ligase WWP2 or the tight junction protein Occludin by Itch.


Assuntos
Canais de Sódio/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitina/metabolismo , Animais , Transporte Biológico/fisiologia , Canais de Cloreto/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Canais Epiteliais de Sódio , Humanos , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases Nedd4 , Ocludina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...